Skip to main content

Deep Learning Project

harvard-logo

An end to end tutorial of a machine learning pipeline

This tutorial tries to do what most Most Machine Learning tutorials available online do not. It is not a 30 minute tutorial which teaches you how to "Train your own neural network" or "Learn deep learning in under 30 minutes". It's a full pipeline which you would need to do if you actually work with machine learning - introducing you to all the parts, and all the implementation decisions and details that need to be made. The dataset is not one of the standard sets like MNIST or CIFAR, you will make you very own dataset. Then you will go through a couple conventional machine learning algorithms, before finally getting to deep learning!
In the fall of 2016, I was a Teaching Fellow (Harvard's version of TA) for the graduate class on "Advanced Topics in Data Science (CS209/109)" at Harvard University. I was in-charge of designing the class project given to the students, and this tutorial has been built on top of the project I designed for the class.

UPDATE 24th October 2018

The tutorial has now been re-written in PyTorch thanks to Anshul Basia (https://github.com/AnshulBasia)

Citing if you use the work here

If you would like to use this work, please cite the work using the doi - DOI

Reading/Viewing the Tutorial

To view the project as an HTML file, visit - https://spandan-madan.github.io/DeepLearningProject/

The Code

If you would like to access to Code, please go through the ipython notebook Deep_Learning_Project.ipynb

SETUP

Python
  • We will be using Python 2.7. Primary reason is that Tensorflow is not compatible with python > 3.5, and some other libraries are not compatible with python 3.
To make setup easy, we are going to use conda.
  • Please install conda 3 from https://www.continuum.io/downloads
  • The repository has a conda config file which will make setting up super easy. It's the file deeplearningproject_environment.yml
  • Then create a new conda environment using the command with conda env create -f deeplearningproject_environment.yml
  • Now, you can activate the environment with: source activate deeplearningproject
  • jupyter notebook If all the isntallations go through, you are good to go! If not, here is a list of packages that need to be installed: requests imDbPy wget tmdbsimple seaborn sklearn Pillow keras tensorflow h5py gensim nltk stop_words
Please install imdbpy using 'pip install imdbpy==6.6' since earlier versions are broken

Setting up conda environment in jupyter notebook

To be able to run the environment you just created on a juputer notebook, first check that you have the python package ipykernel installed. If you don't simply install it using
pip install ipykernel
Now, add this to your jupyter notebook using the command:
python -m ipykernel install --user --name deeplearningproject --display-name "deeplearningproject"
Needless to say, remove all single quotes before running commands.
Go to the directory and run jupyter notbeook by "jupyter notebook" and open the respective notebook on browser. TO install TMDB: pip install tmdbsimple Use "import tmdbsimple as tmdb"

Setting up a docker container with docker-compose

Prerequisites

Run docker-compose

To work with an isolate environment and be able to run it on many systems without troubles, you can run this docker-compose command:
docker-compose up
It will build deeplearningproject image according to Dockerfile. And then run dokcer container via docker-compose. See Docker and docker-compose docs for more informations :
Then access notebooks through your web browser at http://localhost:8888
You should notice that notebooks have been copied from root to notebooks folder to mount them into container via bind volume. Any changes you make, will be saved on host (notebooks dir).

Add packages

You can add conda or pip packages to image (and thus, container) by updating deeplearningproject_environment.yml file and then run
docker-compose build
It will build a new deeplearningproject image with new conda/pip packages installed. Stop your running container (CTRL-C) and then docker-compose up to rerun a fresh new container.

Known common bugs

I will keep updating this as issues pop up on this repository.
  • One known bug is because Keras 2.0 is not compatible with some Keras 1.2 functionalities. You may run into errors with importing VGG16. If so, just update keras using the following command:
sudo pip install git+git://github.com/fchollet/keras.git --upgrade
-OS Error: Too Many Open Files Refer to: https://stackoverflow.com/questions/16526783/python-subprocess-too-many-open-files or, shut down notebook and execute following the the same terminal ``bash ulimit -Sn 10000

And restart the jupyter notebook.

Hope this repo helps introduce you to a full machine learning pipeline! If you spot an error, please create an issue to help out others using this resource!

To prevent problems with installation and setting up, this repository comes with a conda environment profile. The only thing you will need is to install the newest version of conda, and use this profile to create a new environment and it will come set up with all the libraries you will need for the tutorial.

Comments

Popular posts from this blog

Introduction to Machine Learning in Python

Python tutorials for introduction to machine learning Introduction to Machine Learning in Python This repository provides instructional material for machine learning in python. The material is used for two classes taught at NYU Tandon by  Sundeep Rangan : EE-UY / CS-UY 4563: Introduction to Machine Learning (Undergraduate) EL-GY 6123: Introduction to Machine Learning (Graduate) Anyone is free to use and copy this material (at their own risk!). But, please cite the material if you use the material in your own class. Pre-requisites All the software can be run on any laptop (Windows, MAC or UNIX).  Instructions  are also provided to run the code in Google Cloud Platform on a virtual machine (VM). Both classes assume no python or ML experience. However, experience with some programming language (preferably object-oriented) is required. To follow all the mathematical details and to complete the homework exercises, the class assumes undergraduate probability, ...

Python Machine Learning Notebooks (Tutorial style)

Python Machine Learning Notebooks (Tutorial style) Dr. Tirthajyoti Sarkar, Sunnyvale, CA ( You can connect with me on LinkedIn here ) Essential codes/demo IPython notebooks for jump-starting machine learning/data science. You can start with this article that I wrote in Heartbeat magazine (on Medium platform): "Some Essential Hacks and Tricks for Machine Learning with Python" Essential tutorial-type notebooks on Pandas and Numpy Jupyter notebooks covering a wide range of functions and operations on the topics of NumPy, Pandans, Seaborn, matplotlib etc. Basics of Numpy array Basics of Pandas DataFrame Basics of Matplotlib and Descriptive Statistics Tutorial-type notebooks covering regression, classification, clustering, dimensionality reduction, and some basic neural network algorithms Regression Simple linear regression with t-statistic generation Multiple ways to do linear regression in Python and their speed comparison ( check the article I wr...

R tutorials for Data Science, NLP and Machine Learning

R Data Science Tutorials This repo contains a curated list of R tutorials and packages for Data Science, NLP and Machine Learning. This also serves as a reference guide for several common data analysis tasks. Curated list of Python tutorials for Data Science, NLP and Machine Learning . Comprehensive topic-wise list of Machine Learning and Deep Learning tutorials, codes, articles and other resources . Learning R Online Courses tryR on Codeschool Introduction to R for Data Science - Microsoft | edX Introduction to R on DataCamp Data Analysis with R Free resources for learning R R for Data Science - Hadley Wickham Advanced R - Hadley Wickham swirl: Learn R, in R Data Analysis and Visualization Using R MANY R PROGRAMMING TUTORIALS A Handbook of Statistical Analyses Using R , Find Other Chapters Cookbook for R Learning R in 7 simple steps More Resources Awesome-R Repository on GitHub R Reference Card: Cheatsheet R bloggers: blog aggregator R Resources...